746. The Preparation and Complex-forming Properties of One Tritertiary and One Tetratertiary Phosphine.

By J. G. Hartley, L. M. Venanzi, and (in part) D. C. Goodall.

The preparation of tris-(o-diphenylphosphinophenyl)phosphine and bis-(o-diphenylphosphinophenyl)phenylphosphine is described. Complexes of the former with palladium(II) and platinum(II) are five-co-ordinate with trigonal bipyramidal co-ordination, but those of ruthenium(II) and osmium(II) are six-co-ordinate. Complexes of the latter ligand with platinum(II) and palladium(II) are four-co-ordinate in solid state and in solution.

THE unusual complexes ${ }^{1-3}$ produced by tris-(0 -diphenylarsinophenyl)arsine (Ia) and bis-(o-diphenylarsinophenyl)phenylarsine (IIa) prompted us to prepare their phosphorus
(Ia: $L=A s)(Q A S)$
($\mathrm{Ib}: L=P$) (QP)

(IIa: L = As) (TAS)
(IIb: $L=P$) (TP)
analogues (Ib) and (IIb), respectively. These ligands were obtained by the methods indicated in the scheme. They form white crystals, stable in air, moderately soluble in

aromatic hydrocarbons and ethanol, and very soluble in tetrahydrofuran.
The complexes with the phosphorus ligands (see Table 1) were obtained in conditions similar to those used for their arsenic analogues, ${ }^{1-3}$ but were obtained more readily.

The starting material for the preparation of the osmium complexes with ligands (Ia

1 Brewster, Savage, and Venanzi, J., 1961, 3699
2 Hartley and Venanzi, J., 1962, 182.
${ }^{3}$ Savage and Venanzi, $J ., 1962,1548$.

Table 1.
Colour, decomposition point, molar conductance, and magnetic susceptibility of complexes of the ligands (Ia and b) and (IIa and b) with palladium(II), platinum(II), ruthenium(II), and osmium(II).

* For $10^{-3} \mathrm{M}$-nitrobenzene solutions at 19°.
and b) was the salt $\mathrm{K}_{2}\left[\mathrm{Os}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right]$, ${ }^{4}$ described by Wintrebert ${ }^{5}$ and formulated by him as $\mathrm{K}_{2}\left[\mathrm{Os}\left(\mathrm{NO}_{2}\right)_{5}\right]$.

The similarity in physical properties between the complexes with ligands (Ia and b) leads us to assign trigonal-bipyramidal co-ordination to the platinum(II) * and palladium(II) complexes, ${ }^{1,3}$ and a six-co-ordinate structure to the ruthenium(II) and osmium(II) ones. ${ }^{2}$ The visible and ultraviolet spectra of the complexes are given in Table 2. The lowfrequency absorption bands of the phosphorus complexes, as expected, ${ }^{7}$ occur at higher frequencies than those of the arsine complexes. The shifts are much larger in the d^{6} than in the d^{8}-complexes (see Figs.), a fact which can be associated with the smaller energylevel splittings for trigonal-bipyramidal complexes. ${ }^{8}$

The ruthenium(II) and osmium(II) complexes show a residual paramagnetism which, at least in the case of $\left[\mathrm{Ru}(\mathrm{CNS})_{2}(\mathrm{QAS})\right]$, is temperature-independent.

As shown in a previous paper, ${ }^{2}$ potentiometric titration of $[\mathrm{PtCl}(\mathrm{QAS})]\left(\mathrm{ClO}_{4}\right)$ with chlorine indicates its smooth oxidation to the corresponding platinum(IV) derivative. However, when such titration was attempted on the salt $[\mathrm{PdCl}(\mathrm{QAS})]\left(\mathrm{ClO}_{4}\right)$, it was observed that the measured e.m.f. varied erratically as chlorine was added. Oxidation experiments, when carried out on a preparative scale, with $[\mathrm{MCl}(\mathrm{QAS})] \mathrm{Cl}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ and chlorine gave a six-co-ordinate complex $\left[\mathrm{MCl}_{2}(\mathrm{QAS})\right] \mathrm{Cl}_{2}$ (see Table 1). In the preparation of the palladium(Iv) complex, however, a large excess of chlorine was necessary to afford the desired product, indicating that the difference in stability of the $M(\mathrm{II}) / \mathrm{M}(\mathrm{Iv})$ couple ($\mathrm{M}=\mathrm{Pd}$ or Pt) is maintained in our complexes.

The complexes of the tritertiary phosphine (IIb) with palladium(II) and platinum(II) are 1:1 electrolytes in nitrobenzene (see Table 1) and are presumably four-co-ordinate. By contrast, the complex $\left[\mathrm{PdI}_{2}(\mathrm{TAS})\right]$ is only partially dissociated in this solvent, ${ }^{3}$ showing preferential five-co-ordination. This observation is in good agreement with the

[^0]Table 2.
Wavelength of absorption ($\lambda_{\max }$), energy of absorption ($E_{\max }$), and molar extinction coefficients (ε) of complexes of palladium(II), platinum(II), ruthenium(II), and osmium(II) with tridentate and tetradentate phosphorus and arsenic ligands.

Table 2. (Continued.)

Complex	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{m} \mu) \end{aligned}$	$\underset{\underset{\text { Solution }}{E_{\text {max. }}} \dagger}{(\mathrm{kK})}$	$\begin{gathered} \varepsilon \\ \text { (1. mole } \\ \text {-1 } \left.\mathrm{cm} \cdot .^{-1}\right) \end{gathered}$	$\begin{aligned} & \lambda_{\max } \\ & (\operatorname{m} \mu) \end{aligned}$	Solid $E_{\text {max }}$ (kK)	" D "
$\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right] \ldots$$\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right] \dagger$	231	$43 \cdot 20$	58,200			
	282	$35 \cdot 40$	27,400	446	$22 \cdot 40$	$1 \cdot 61$
	444	22.50	4920			
$\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right] \ddagger$	299	33.40	23,100			
	389	25.70	3200			

* Broad band. \dagger In dichloromethane. sh $=$ shoulder. \ddagger In ethanol solution; not recorded above $35,000 \mathrm{~cm} .^{-1}$.
hypothesis that lower co-ordination numbers will be found when the metal ion is coordinated to π-bonding ligands. ${ }^{3}$ Since phosphorus is believed to form stronger π-bonds than arsenic, ${ }^{9}$ the tritertiary phosphine (IIb) should show less tendency to form five-coordinate complexes than the corresponding tritertiary arsine (IIa). It must be pointed

Fig. 1. Visible and ultraviolet spectra of complexes of ligands (Ia and b) with palladium(II) and platinum(II).

Fig. 2. Visible and ultraviolet spectra of complexes of ligands (Ia and b) with ruthenium(II) and osmium(II).

$$
\begin{aligned}
& \bullet \cdots \triangle\left[\mathrm{RuCl}_{2}(\mathrm{QP})\right] ; \\
& \left.\triangle-\mathrm{RuCl}_{2}(\mathrm{QAS})\right] ; \\
& \triangle-\cdots \triangle\left[\mathrm{OsCl}_{2}(\mathrm{QP})\right] ; \\
& \square---\square\left[\mathrm{OsCl}_{2}(\mathrm{QAS})\right] .
\end{aligned}
$$

out, however, that Barclay et al. ${ }^{6}$ have suggested that the tendency to form five-co-ordinate d^{8} complexes increases as (i) the formal charge on the metal atom decreases, (ii) the effective nuclear charge on the metal atom decreases, and (iii) the polarisability of the anion increases. If it is assumed that the effect of increasing polarisability on co-ordination numbers applies to uncharged ligands as well as to anionic ones, our results could be explained without invoking π-bonding. In our complexes, however, effect (iii) does not appear to operate: the molar conductances of complexes $\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right]$ and $\left[\mathrm{PdI}_{2}(\mathrm{TAS})\right]$
${ }^{9}$ Chatt and Wilkins, $J ., 1952,4300$.

3934 Hartley et al.: Preparation and Complex-forming Properties

in nitrobenzene are practically identical over the concentration range $1-3 \times 10^{-3} \mathrm{M}$ and differ only slightly at higher dilutions (see Experimental section).

Experimental

o-Bromophenyldichlorophosphine was prepared by the method of Quin and Humphrey, ${ }^{10}$ from o-bromophenyldiazonium fluoroborate (125 g .) in 21% yield. It had b. p. $90-93^{\circ} / 0 \cdot 9$ mm . (Found: P, 11.8. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrCl}_{2} \mathrm{P}$ requires $\mathrm{P}, 12 \cdot 0 \%$).
o-Bromophenyldiphenylphosphine.-o-Bromophenyldichlorophosphine (24 g .) in dry ether (50 c.c.) was treated with phenylmagnesium bromide (10% excess) in ether (150 c.c.). The product, on recrystallisation from ethanol, gave prisms, m. p. 112- $113^{\circ}(36 \%)$ (Hart ${ }^{11}$ gives m. p. 114°).

Tris-(o-diphenylphosphinophenyl)phosphine (Ib).-o-Bromophenyldiphenylphosphine (11.6 g.) in ether (50 c.c.) was treated with 0.985 N -ethereal n -butyl-lithium ($35 \mathrm{c} . \mathrm{c}$.), and the lithium derivative formed was treated with phosphorus trichloride (1 c.c.) in ether (50 c.c.). The solid residue obtained on hydrolysis was filtered off (7 g .) and recrystallised from dimethylformamide as prisms, m. p. 221-223 ${ }^{\circ}$, of monosolvate (Found: C, 77.1; H, $5.6 ; \mathrm{N}, 1 \cdot 2 ; \mathrm{P}, 13.8$. $\mathrm{C}_{57} \mathrm{H}_{49} \mathrm{NOP}_{4}$ requires $\mathrm{C}, 77 \cdot 1 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 1 \cdot 4 ; \mathrm{P}, 13.95 \%$).

Bis-(o-diphenylphosphinophenyl)phenylphosphine (IIb).-Dichlorophenylphosphine ($2 \cdot 3$ c.c.) in ether ($50 \mathrm{c} . \mathrm{c}$.) was added to a solution of o-lithiophenyldiphenylphosphine (from 10.7 g . of o-bromophenyldiphenylphosphine). The product $(2.3 \mathrm{~g}$.) recrystallised from dimethylformamide as prisms, m. p. 226-228 ${ }^{\circ}$, of monosolvate (Found: N, 1.8; P, 13.45. $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{NOP}_{3}$ requires $\mathrm{N}, 2 \cdot 0$; $\mathrm{P}, 13 \cdot 2 \%$).

Tris-(o-diphenylphosphinophenyl)phosphine Complexes.- $[\mathrm{PtCl}(\mathrm{QP})] \mathrm{Cl}$. Sodium chloroplatinite tetrahydrate (0.23 g.) in ethanol (20 c.c.) was added to a boiling suspension of the ligand (0.46 g .) in ethanol ($20 \mathrm{c} . \mathrm{c}$.). After refluxing for 3 hr . the solution was evaporated in vacuo, leaving the product which recrystallised (0.35 g .) from chlorobenzene (Found: Pt, $17.9 ; \mathrm{P}, 11 \cdot 25 . \quad \mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires $\mathrm{Pt}, 18 \cdot 05 ; \mathrm{P}, 11 \cdot 45 \%$).
$[\mathrm{PtCl}(\mathrm{QP})]\left[\mathrm{BPh}_{4}\right]$. The chloro-chloride above (0.08 g .) in ethanol was treated with a slight excess of sodium tetraphenylborate, the precipitated complex was filtered off, dissolved in dichloromethane, and reprecipitated with ethanol (Found: Pt, 14.4; P, 9•1. $\mathrm{C}_{78} \mathrm{H}_{62} \mathrm{BClP}_{4} \mathrm{Pt}$ requires $\mathrm{Pt}, 14 \cdot 3$; $\mathrm{P}, \mathbf{9 \cdot 1} \%$).
$[\mathrm{PtI}(\mathrm{QP})] \mathrm{I}$. The chloro-chloride ($0 \cdot 125 \mathrm{~g}$.) was refluxed in ethanol (30 c.c.) with sodium iodide (0.06 g .) for 4 hr . The orange solution was filtered from the precipitated sodium chloride and evaporated in vacuo to leave the complex ($0 \cdot 129 \mathrm{~g}$.) which recrystallised from nitromethane (Found: Pt, 15.2; P, 9.9. $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{I}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires $\mathrm{Pt}, \mathbf{1 5 \cdot 4 ;} \mathrm{P}, \mathbf{9 . 8} \%$).
$[\mathrm{PtI}(\mathrm{QP})]\left[\mathrm{BPh}_{4}\right]$. This salt was prepared and purified as was its chloro-analogue (Found: $\mathrm{Pt}, 13 \cdot 2 ; \mathrm{P}, 8.5 . \quad \mathrm{C}_{78} \mathrm{H}_{62} \mathrm{BIP}_{4} \mathrm{Pt}$ requires $\left.\mathrm{Pt}, 13 \cdot 4 ; \mathrm{P}, 8 \cdot 5 \%\right)$.
$[\mathrm{Pd}(\mathrm{QP}) \mathrm{Cl}] \mathrm{Cl}$. This chloride was prepared similarly to its platinum analogue and recrystallised from nitromethane (Found: Pd, 10.65; P, 12.4. $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Pd}$ requires $\mathrm{Pd}, \mathbf{1 0 . 7 5}$; P, 12.5%).

The following complexes were prepared and purified similarly to their platinum analogues: $[\mathrm{PdI}(\mathrm{QP})] \mathrm{I}$ (Found: Pd, 8.95; P, 10.5. $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{I}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires $\mathrm{Pd}, \mathbf{9 . 0 5 ; ~ P , ~ 1 0 . 5 \%) .}$ $[\mathrm{PdCl}(\mathrm{QP})]\left[\mathrm{BPh}_{4}\right]$ (Found: Pd, 8.2; P, 9.6. $\mathrm{C}_{78} \mathrm{H}_{62} \mathrm{BClP}_{4} \mathrm{Pd}$ requires $\mathrm{Pd}, 8.35 ; \mathrm{P}, 9.7 \%$). $[\mathrm{PdI}(\mathrm{QP})]\left[\mathrm{BPh}_{4}\right]$ (Found: Pd, 7.8; P, 9.15. $\mathrm{C}_{75} \mathrm{H}_{62} \mathrm{BIP}_{4} \mathrm{Pd}$ requires $\mathrm{Pd}, 7.8 ; \mathrm{P}, 9.05 \%$).

The complex $\left[\mathrm{RuCl}_{2}(\mathrm{QP})\right]$. Dry hydrogen chloride was passed through a solution of the salt $\mathrm{K}_{2}\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right]\left(0.22 \mathrm{~g}\right.$.) in tetrahydrofurfuryl alcohol (20 c.c.) at 100° for 30 min . The ligand (0.45 g .) was added to the violet suspension of the chloro-complex $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}(\mathrm{NO})\right]$ formed, ${ }^{2}$ the mixture refluxed for 3 hr ., and the resulting brown solution evaporated at the oil-pump. Tetrahydrofuran (25 c.c.) was added, and the complex (0.3 g .) filtered off and purified by repeated precipitation from methylene chloride solution by carbon tetrachloride (Found: $\mathrm{Ru}, 10.9$; $\mathrm{P}, 12 \cdot 4 . \quad \mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Ru}$ requires $\mathrm{Ru}, 10 \cdot 85$; $\mathrm{P}, 12.55 \%$).

The complex $\left[\mathrm{OsCl}_{2}(\mathrm{QP})\right]$. Dry hydrogen chloride was passed through a suspension of the salt $\mathrm{K}_{2}\left[\mathrm{Os}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right]^{4}$ in absolute alcohol. The resulting yellow-brown solution was filtered from potassium chloride and evaporated to dryness, leaving a yellow-brown solid

[^1]which was assumed to be the substance $\left[\mathrm{OsCl}_{3}(\mathrm{NO})\right]$. This ($0 \cdot 16 \mathrm{~g}$.) was refluxed in tetrahydrofurfuryl alcohol ($20 \mathrm{c} . \mathrm{c}$.) with the ligand (Ib) $(0.4 \mathrm{~g}$.) for 6 hr . The product was isolated and purified as described for the analogous ruthenium complex (Found: Os, 17.6; P, 11.4. $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{OsP}_{4}$ requires Os, $17 \cdot 65$; $\mathrm{P}, 11 \cdot 5 \%$).

Bis-(o-diphenylphosphinophenyl)phenylphosphine Complexes.-[PdI(TP)]I. Palladous iodide (0.25 g .), the ligand (IIb) $(0.4 \mathrm{~g}$.), and sodium iodide (0.05 g .) were refluxed for 12 hr . in ethanol (50 c.c.) and chloroform (10 c.c.). The orange solution was filtered and evaporated in vacuo, leaving the complex (0.36 g .) which was repeatedly precipitated from methylene chloride solution by light petroleum (Found: Pd, 10.7; P, 9.2. $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{I}_{2} \mathrm{P}_{3} \mathrm{Pd}$ requires Pd , $10.75 \mathrm{P}, 9.35 \%$).
$[\mathrm{PdI}(\mathrm{TP})]\left(\mathrm{ClO}_{4}\right)$. The above iodo-iodide ($0 \cdot 1 \mathrm{~g}$.) in ethanol ($30 \mathrm{c} . \mathrm{c}$.) was treated with sodium perchlorate (0.02 g .) and left overnight. The precipitated yellow-orange perchlorate (0.07 g .) was filtered off and purified by precipitation from dichloromethane solution by ethanol (Found: $\mathrm{Pd}, 11 \cdot 1 ; \mathrm{P}, 9.7 . \mathrm{C}_{42} \mathrm{H}_{33} \mathrm{ClO}_{4} \mathrm{P}_{3} \mathrm{Pd}$ requires $\mathrm{Pd}, 11.05 ; \mathrm{P}, 9.65 \%$).
$[\mathrm{PtI}(\mathrm{TP})] \mathrm{I}$. Sodium chloroplatinite tetrahydrate $(0.35 \mathrm{~g}$.) in ethanol (10 c.c.) was added to a solution of sodium iodide ($0 \cdot 4 \mathrm{~g}$.) in ethanol ($8 \mathrm{c} . \mathrm{c}$.) and after 2 hr . the precipitated sodium chloride was filtered off. The filtrate was refluxed with the ligand (IIb) (0.44 g .) for 3 hr . The product (0.52 g .) was filtered off, washed with tetrahydrofuran, and recrystallised from nitromethane (Found: Pt, 17.9; P, 8.55. $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{I}_{2} \mathrm{P}_{3} \mathrm{Pt}$ requires $\mathrm{Pt}, 18.05 ; \mathrm{P}, 8.6 \%$).
$[\mathrm{PtI}(\mathrm{TP})]\left(\mathrm{ClO}_{4}\right)$. This salt was prepared similarly to its palladium analogue (Found: Pt, 18.65 ; P, 8.7. $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{ClIO}_{4} \mathrm{P}_{3} \mathrm{Pt}$ requires $\mathrm{Pt}, 18.55$; $\mathrm{P}, 8.8 \%$).

Dibromobis-(o-diphenylarsinophenyl)phenylarsinepalladium (II), $\quad\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right]$. -Sodium bromopalladite (0.2 g .) in ethanol (20 c.c.) was refluxed with the ligand (IIa) (0.3 g .) for 2 hr . The complex crystallised from the orange-yellow solution overnight (0.245 g .) and recrystallised from ethanol (Found: Pd, 10.3; As, 21.6. $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{As}_{3} \mathrm{Br}_{2} \mathrm{Pd}$ requires $\mathrm{Pd}, 10 \cdot 4$; As, 21.8%).

Tris-(o-diphenylarsinophenyl)arsine Complexes.-The dichloro-osmium complex, [$\mathrm{OsCl}_{2}(\mathrm{QAS})$], was prepared like its phosphorus analogue. The ligand (Ia) (0.5 g .) and the substance $\left[\mathrm{OsCl}_{3}(\mathrm{NO})\right](0 \cdot 16 \mathrm{~g}$.) in tetrahydrofurfuryl alcohol ($20 \mathrm{c} . \mathrm{c}$.) gave 0.09 g . of pure complex (Found: Os, $15 \cdot 05$; As, 23.7. $\quad \mathrm{C}_{54} \mathrm{H}_{42} \mathrm{As}_{4} \mathrm{Cl}_{2}$ Os requires Os, $15 \cdot 2$; As, 23.95%).

The dichloro-palladium dichloride complex, $\left[\mathrm{PdCl}_{2}(\mathrm{QAS})\right] \mathrm{Cl}_{2}$. The chloride $[\mathrm{PdCl}(\mathrm{QAS})] \mathrm{Cl}^{3}$ $(0.09 \mathrm{~g}$.) in dichloromethane ($25 \mathrm{c} . \mathrm{c}$.) was treated with a 0.025 M -solution of chlorine in carbon tetrachloride (17 c.c.). The orange-red solution became yellow overnight and on evaporation gave the product (0.08 g .) which was precipitated from dichloromethane solution by light petroleum (Found: Pd, $8 \cdot 4 ; \mathrm{As}, 24 \cdot 1 . \mathrm{C}_{54} \mathrm{H}_{42} \mathrm{As}_{4} \mathrm{Cl}_{4} \mathrm{Pd}$ requires $\mathrm{Pd}, 8 \cdot 6 ; \mathrm{As}, 24 \cdot 2 \%$).

The dichloro-platinum dichloride complex, $\left[\mathrm{PtCl}_{2}(\mathrm{QAS})\right] \mathrm{Cl}_{2}$, was prepared and purified as was its palladium analogue, the platinum(II) complex ($0 \cdot 1 \mathrm{~g}$.) and 0.025 m -chlorine (7.5 c .c.) being used (Found: Pt, 14.5; As, 22.3. $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{As}_{4} \mathrm{Cl}_{4} \mathrm{Pt}$ requires $\mathrm{Pt}, \mathbf{1 4 \cdot 7}$; As, $22 \cdot 6 \%$).

Analyses.-Palladium, ${ }^{3}$ platinum, ${ }^{1}$ ruthenium, ${ }^{2}$ osmium, ${ }^{12}$ phosphorus, ${ }^{13}$ and arsenic ${ }^{3}$ were determined spectrophotometrically. "Ashing" of the samples for the phosphorus determinations was carried out as follows: the solid complex (ca. 10 mg .) was heated at 190° with a $1: 1$ mixture (2 c.c.) of 98% sulphuric acid and 73% perchloric acid for 12 hr . During this time concentrated nitric acid (l c.c.) was added dropwise. This solution was diluted to 1 l . with water, and a sample (usually 25 c.c.) used for the determination. The osmium complexes were decomposed with a saturated solution of chromium trioxide and concentrated sulphuric acid, since the mixture of concentrated nitric and sulphuric acid recommended by Sandell ${ }^{12}$ gave low results.

Conductivity Measurements.-These were done as described elsewhere. ${ }^{2}$ The concentrationdependences of nitrobenzene solutions at 19° were:

Molarity	3×10^{-3}	2×10^{-3}	1×10^{-3}	5×10^{-4}	1×10^{-4}
$\left[\mathrm{PdBr}_{2}(\mathrm{TAS})\right], \chi \ldots \ldots \ldots \ldots$.	6.70	8.24	$11 \cdot 64$	$15 \cdot 45$	$25 \cdot 04$
$\left[\mathrm{PdI}_{2}(\mathrm{TAS})\right], \chi \chi \ldots \ldots \ldots$.	6.73	8.15	10.98	14.36	24.30

Magnetic-susceptibility Measurements.-These were done as described elsewhere. ${ }^{2}$ Measurements over the temperature range $140-350^{\circ} \mathrm{K}$ showed that the previously reported weak paramagnetic susceptibility of the complex $\left[\mathrm{Ru}(\mathrm{CNS})_{2}(\mathrm{QAS})\right]$ is temperature-independent.

[^2]Infrared Spectra.-These were recorded for Nujol or hexachlorobutadiene mulls on a Perkin-Elmer 221 spectrophotometer.

Visible and Ultraviolet Spectra.--These were recorded on a Unicam S.P. 700 spectrophotometer. The reflection spectra were recorded on an S.P. 500 spectrophotometer fitted with diffuse reflection attachment S.P. 540.

The authors thank D.S.I.R. for a grant to J. G. H., Messrs. Albright and Wilson for a grant to D. C. G. and for a generous gift of chemicals, and Mr. J. P. Day for assistance with the development of phosphorus analyses.

Inorganic Chemistry Laboratory, University of Oxford. [Received, December 14th, 1962.]

[^0]: * The complex $[\mathrm{PtI}(\mathrm{QAS})]\left[\mathrm{BPh}_{4}\right.$] has trigonal-bipyramidal structure, ${ }^{1}$ and not square-pyramidal structure as stated by Barclay et al. ${ }^{6}$
 ${ }^{4}$ Irving, Lewis, and Wilkinson, J. Inorg. Nuclear Chem., 1958, 7, 32.
 5 Wintrebert, Ann. Chim. Phys., 1903, 28, 15.
 ${ }^{6}$ Barclay, Nyholm, and Parish, J., 1961, 4433.
 ${ }^{7}$ Chatt, Gamlen, and Orgel, J., 1959, 1047.
 ${ }^{8}$ Ballhausen and Jørgensen, Kgl. danske Videnskab. Selskab, Mat.-fys. Medd., 1954, 29, no. 4.

[^1]: ${ }^{10}$ Quin and Humphrey, J. Amer. Chem. Soc., 1961, 83, 4124.
 ${ }^{11}$ Hart, J., 1960, 3324.

[^2]: 12 Sandell, "Colorimetric Determination of Traces of Metals," Interscience Publ., Inc., New York, 1959, p. 704.
 ${ }_{13}$ Bartlett, J. Biol. Chem., 1959, 234, 466.

